Copied to
clipboard

?

G = C4224D14order 448 = 26·7

24th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4224D14, C14.1382+ (1+4), C4⋊C434D14, (C4×D28)⋊14C2, (C4×C28)⋊8C22, C42⋊D76C2, C422C23D7, D28⋊C440C2, D14⋊C463C22, D142Q840C2, D14⋊Q841C2, C22⋊D28.3C2, C4⋊Dic762C22, C22⋊C4.77D14, D14.26(C4○D4), D14.D449C2, D14.5D439C2, (C2×C28).603C23, (C2×C14).249C24, Dic7⋊C468C22, (C4×Dic7)⋊58C22, C2.63(D48D14), C23.55(C22×D7), Dic7.D445C2, C79(C22.45C24), (C2×Dic14)⋊33C22, (C2×D28).226C22, C23.D1445C2, (C22×C14).63C23, (C23×D7).69C22, C22.270(C23×D7), C23.D7.65C22, (C2×Dic7).129C23, (C22×D7).223C23, C2.96(D7×C4○D4), (C2×C4×D7)⋊53C22, C4⋊C47D739C2, (C7×C4⋊C4)⋊33C22, (D7×C22⋊C4)⋊21C2, (C7×C422C2)⋊4C2, C14.207(C2×C4○D4), (C2×C4).86(C22×D7), (C2×C7⋊D4).69C22, (C7×C22⋊C4).74C22, SmallGroup(448,1158)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4224D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4224D14
C7C2×C14 — C4224D14

Subgroups: 1324 in 248 conjugacy classes, 95 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C4 [×11], C22, C22 [×18], C7, C2×C4 [×6], C2×C4 [×12], D4 [×5], Q8, C23, C23 [×8], D7 [×5], C14 [×3], C14, C42, C42 [×2], C22⋊C4 [×3], C22⋊C4 [×11], C4⋊C4 [×3], C4⋊C4 [×5], C22×C4 [×5], C2×D4 [×3], C2×Q8, C24, Dic7 [×5], C28 [×6], D14 [×4], D14 [×11], C2×C14, C2×C14 [×3], C2×C22⋊C4 [×2], C42⋊C2 [×2], C4×D4 [×2], C22≀C2, C22⋊Q8 [×2], C22.D4 [×3], C4.4D4, C422C2, C422C2, Dic14, C4×D7 [×7], D28 [×4], C2×Dic7 [×5], C7⋊D4, C2×C28 [×6], C22×D7 [×3], C22×D7 [×5], C22×C14, C22.45C24, C4×Dic7 [×2], Dic7⋊C4 [×3], C4⋊Dic7 [×2], D14⋊C4 [×9], C23.D7 [×2], C4×C28, C7×C22⋊C4 [×3], C7×C4⋊C4 [×3], C2×Dic14, C2×C4×D7 [×5], C2×D28 [×2], C2×C7⋊D4, C23×D7, C42⋊D7, C4×D28, C23.D14, D7×C22⋊C4 [×2], C22⋊D28, D14.D4, Dic7.D4, C4⋊C47D7, D28⋊C4, D14.5D4 [×2], D14⋊Q8, D142Q8, C7×C422C2, C4224D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C4○D4 [×4], C24, D14 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D7 [×7], C22.45C24, C23×D7, D7×C4○D4 [×2], D48D14, C4224D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 99 10 78)(2 107 11 72)(3 101 12 80)(4 109 13 74)(5 103 14 82)(6 111 8 76)(7 105 9 84)(15 102 22 81)(16 110 23 75)(17 104 24 83)(18 112 25 77)(19 106 26 71)(20 100 27 79)(21 108 28 73)(29 65 89 58)(30 45 90 52)(31 67 91 60)(32 47 92 54)(33 69 93 62)(34 49 94 56)(35 57 95 64)(36 51 96 44)(37 59 97 66)(38 53 98 46)(39 61 85 68)(40 55 86 48)(41 63 87 70)(42 43 88 50)
(1 62 26 48)(2 70 27 56)(3 64 28 50)(4 58 22 44)(5 66 23 52)(6 60 24 46)(7 68 25 54)(8 67 17 53)(9 61 18 47)(10 69 19 55)(11 63 20 49)(12 57 21 43)(13 65 15 51)(14 59 16 45)(29 81 36 109)(30 103 37 75)(31 83 38 111)(32 105 39 77)(33 71 40 99)(34 107 41 79)(35 73 42 101)(72 87 100 94)(74 89 102 96)(76 91 104 98)(78 93 106 86)(80 95 108 88)(82 97 110 90)(84 85 112 92)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 11)(9 10)(12 14)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(43 66)(44 65)(45 64)(46 63)(47 62)(48 61)(49 60)(50 59)(51 58)(52 57)(53 70)(54 69)(55 68)(56 67)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 93)(86 92)(87 91)(88 90)(94 98)(95 97)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)

G:=sub<Sym(112)| (1,99,10,78)(2,107,11,72)(3,101,12,80)(4,109,13,74)(5,103,14,82)(6,111,8,76)(7,105,9,84)(15,102,22,81)(16,110,23,75)(17,104,24,83)(18,112,25,77)(19,106,26,71)(20,100,27,79)(21,108,28,73)(29,65,89,58)(30,45,90,52)(31,67,91,60)(32,47,92,54)(33,69,93,62)(34,49,94,56)(35,57,95,64)(36,51,96,44)(37,59,97,66)(38,53,98,46)(39,61,85,68)(40,55,86,48)(41,63,87,70)(42,43,88,50), (1,62,26,48)(2,70,27,56)(3,64,28,50)(4,58,22,44)(5,66,23,52)(6,60,24,46)(7,68,25,54)(8,67,17,53)(9,61,18,47)(10,69,19,55)(11,63,20,49)(12,57,21,43)(13,65,15,51)(14,59,16,45)(29,81,36,109)(30,103,37,75)(31,83,38,111)(32,105,39,77)(33,71,40,99)(34,107,41,79)(35,73,42,101)(72,87,100,94)(74,89,102,96)(76,91,104,98)(78,93,106,86)(80,95,108,88)(82,97,110,90)(84,85,112,92), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,11)(9,10)(12,14)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(43,66)(44,65)(45,64)(46,63)(47,62)(48,61)(49,60)(50,59)(51,58)(52,57)(53,70)(54,69)(55,68)(56,67)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,93)(86,92)(87,91)(88,90)(94,98)(95,97)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)>;

G:=Group( (1,99,10,78)(2,107,11,72)(3,101,12,80)(4,109,13,74)(5,103,14,82)(6,111,8,76)(7,105,9,84)(15,102,22,81)(16,110,23,75)(17,104,24,83)(18,112,25,77)(19,106,26,71)(20,100,27,79)(21,108,28,73)(29,65,89,58)(30,45,90,52)(31,67,91,60)(32,47,92,54)(33,69,93,62)(34,49,94,56)(35,57,95,64)(36,51,96,44)(37,59,97,66)(38,53,98,46)(39,61,85,68)(40,55,86,48)(41,63,87,70)(42,43,88,50), (1,62,26,48)(2,70,27,56)(3,64,28,50)(4,58,22,44)(5,66,23,52)(6,60,24,46)(7,68,25,54)(8,67,17,53)(9,61,18,47)(10,69,19,55)(11,63,20,49)(12,57,21,43)(13,65,15,51)(14,59,16,45)(29,81,36,109)(30,103,37,75)(31,83,38,111)(32,105,39,77)(33,71,40,99)(34,107,41,79)(35,73,42,101)(72,87,100,94)(74,89,102,96)(76,91,104,98)(78,93,106,86)(80,95,108,88)(82,97,110,90)(84,85,112,92), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,11)(9,10)(12,14)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(43,66)(44,65)(45,64)(46,63)(47,62)(48,61)(49,60)(50,59)(51,58)(52,57)(53,70)(54,69)(55,68)(56,67)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,93)(86,92)(87,91)(88,90)(94,98)(95,97)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106) );

G=PermutationGroup([(1,99,10,78),(2,107,11,72),(3,101,12,80),(4,109,13,74),(5,103,14,82),(6,111,8,76),(7,105,9,84),(15,102,22,81),(16,110,23,75),(17,104,24,83),(18,112,25,77),(19,106,26,71),(20,100,27,79),(21,108,28,73),(29,65,89,58),(30,45,90,52),(31,67,91,60),(32,47,92,54),(33,69,93,62),(34,49,94,56),(35,57,95,64),(36,51,96,44),(37,59,97,66),(38,53,98,46),(39,61,85,68),(40,55,86,48),(41,63,87,70),(42,43,88,50)], [(1,62,26,48),(2,70,27,56),(3,64,28,50),(4,58,22,44),(5,66,23,52),(6,60,24,46),(7,68,25,54),(8,67,17,53),(9,61,18,47),(10,69,19,55),(11,63,20,49),(12,57,21,43),(13,65,15,51),(14,59,16,45),(29,81,36,109),(30,103,37,75),(31,83,38,111),(32,105,39,77),(33,71,40,99),(34,107,41,79),(35,73,42,101),(72,87,100,94),(74,89,102,96),(76,91,104,98),(78,93,106,86),(80,95,108,88),(82,97,110,90),(84,85,112,92)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,11),(9,10),(12,14),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(43,66),(44,65),(45,64),(46,63),(47,62),(48,61),(49,60),(50,59),(51,58),(52,57),(53,70),(54,69),(55,68),(56,67),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,93),(86,92),(87,91),(88,90),(94,98),(95,97),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106)])

Matrix representation G ⊆ GL6(𝔽29)

0120000
1200000
001000
000100
0000170
0000017
,
010000
100000
001000
000100
000001
0000280
,
100000
0280000
004400
00251800
000010
0000028
,
100000
0280000
004400
00182500
000010
000001

G:=sub<GL(6,GF(29))| [0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,17,0,0,0,0,0,0,17],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,28,0,0,0,0,1,0],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,4,25,0,0,0,0,4,18,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,4,18,0,0,0,0,4,25,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

67 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O7A7B7C14A···14I14J14K14L28A···28R28S···28AA
order122222222244444444444444477714···1414141428···2828···28
size11114141414142822224444141414142828282222···28884···48···8

67 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D142+ (1+4)D7×C4○D4D48D14
kernelC4224D14C42⋊D7C4×D28C23.D14D7×C22⋊C4C22⋊D28D14.D4Dic7.D4C4⋊C47D7D28⋊C4D14.5D4D14⋊Q8D142Q8C7×C422C2C422C2D14C42C22⋊C4C4⋊C4C14C2C2
# reps11112111112111383991126

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{24}D_{14}
% in TeX

G:=Group("C4^2:24D14");
// GroupNames label

G:=SmallGroup(448,1158);
// by ID

G=gap.SmallGroup(448,1158);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,1571,570,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽